45 research outputs found

    Determination of step--edge barriers to interlayer transport from surface morphology during the initial stages of homoepitaxial growth

    Full text link
    We use analytic formulae obtained from a simple model of crystal growth by molecular--beam epitaxy to determine step--edge barriers to interlayer transport. The method is based on information about the surface morphology at the onset of nucleation on top of first--layer islands in the submonolayer coverage regime of homoepitaxial growth. The formulae are tested using kinetic Monte Carlo simulations of a solid--on--solid model and applied to estimate step--edge barriers from scanning--tunneling microscopy data on initial stages of Fe(001), Pt(111), and Ag(111) homoepitaxy.Comment: 4 pages, a Postscript file, uuencoded and compressed. Physical Review B, Rapid Communications, in press

    The process of irreversible nucleation in multilayer growth. I. Failure of the mean-field approach

    Full text link
    The formation of stable dimers on top of terraces during epitaxial growth is investigated in detail. In this paper we focus on mean-field theory, the standard approach to study nucleation. Such theory is shown to be unsuitable for the present problem, because it is equivalent to considering adatoms as independent diffusing particles. This leads to an overestimate of the correct nucleation rate by a factor N, which has a direct physical meaning: in average, a visited lattice site is visited N times by a diffusing adatom. The dependence of N on the size of the terrace and on the strength of step-edge barriers is derived from well known results for random walks. The spatial distribution of nucleation events is shown to be different from the mean-field prediction, for the same physical reason. In the following paper we develop an exact treatment of the problem.Comment: 19 pages, 3 figures. To appear in Phys. Rev.

    The role of symmetry on interface states in magnetic tunnel junctions

    Full text link
    When an electron tunnels from a metal into the barrier in a magnetic tunnel junction it has to cross the interface. Deep in the metal the eigenstates for the electron can be labelled by the point symmetry group of the bulk but around the interface this symmetry is reduced and one has to use linear combinations of the bulk states to form the eigenstates labelled by the irreducible representations of the point symmetry group of the interface. In this way there can be states localized at the interface which control tunneling. The conclusions as to which are the dominant tunneling states are different from that conventionally found.Comment: 14 pages, 5 figures, accepted in PRB, v2: reference 3 complete

    Irreversible nucleation in molecular beam epitaxy: From theory to experiments

    Full text link
    Recently, the nucleation rate on top of a terrace during the irreversible growth of a crystal surface by MBE has been determined exactly. In this paper we go beyond the standard model usually employed to study the nucleation process, and we analyze the qualitative and quantitative consequences of two important additional physical ingredients: the nonuniformity of the Ehrlich-Schwoebel barrier at the step-edge, because of the existence of kinks, and the steering effects, due to the interaction between the atoms of the flux and the substrate. We apply our results to typical experiments of second layer nucleation.Comment: 11 pages. Table I corrected and one appendix added. To be published in Phys. Rev. B (scheduled issue: 15 February 2003

    Structure of self-organized Fe clusters grown on Au(111) analyzed by Grazing Incidence X-Ray Diffraction

    Full text link
    We report a detailed investigation of the first stages of the growth of self-organized Fe clusters on the reconstructed Au(111) surface by grazing incidence X-ray diffraction. Below one monolayer coverage, the Fe clusters are in "local epitaxy" whereas the subsequent layers adopt first a strained fcc lattice and then a partly relaxed bcc(110) phase in a Kurdjumov-Sachs epitaxial relationship. The structural evolution is discussed in relation with the magnetic properties of the Fe clusters.Comment: 7 pages, 6 figures, submitted to Physical Review B September 200

    Investigation of Single Boron Acceptors at the Cleaved Si:B (111) Surface

    Full text link
    The cleaved and (2 x 1) reconstructed (111) surface of p-type Si is investigated by scanning tunneling microscopy (STM). Single B acceptors are identified due to their characteristic voltage-dependent contrast which is explained by a local energetic shift of the electronic density of states caused by the Coulomb potential of the negatively charged acceptor. In addition, detailed analysis of the STM images shows that apparently one orbital is missing at the B site at sample voltages of 0.4 - 0.6 V, corresponding to the absence of a localized dangling-bond state. Scanning tunneling spectroscopy confirms a strongly altered density of states at the B atom due to the different electronic structure of B compared to Si.Comment: 6 pages, 7 figure

    Coarsening of Surface Structures in Unstable Epitaxial Growth

    Full text link
    We study unstable epitaxy on singular surfaces using continuum equations with a prescribed slope-dependent surface current. We derive scaling relations for the late stage of growth, where power law coarsening of the mound morphology is observed. For the lateral size of mounds we obtain ξt1/z\xi \sim t^{1/z} with z4z \geq 4. An analytic treatment within a self-consistent mean-field approximation predicts multiscaling of the height-height correlation function, while the direct numerical solution of the continuum equation shows conventional scaling with z=4, independent of the shape of the surface current.Comment: 15 pages, Latex. Submitted to PR

    Reversed anisotropies and thermal contraction of FCC (110) surfaces

    Full text link
    The observed anisotropies of surface vibrations for unreconstructed FCC metal (110) surfaces are often reversed from the "common sense" expectation. The source of these reversals is investigated by performing ab initio density functional theory calculations to obtain the surface force constant tensors for Ag(110), Cu(110) and Al(110). The most striking result is a large enhancement in the coupling between the first and third layers of the relaxed surface, which strongly reduces the amplitude of out-of-plane vibrations of atoms in the first layer. This also provides a simple explanation for the thermal contraction of interlayer distances. Both the anisotropies and the thermal contraction arise primarily as a result of the bond topology, with all three (110) surfaces showing similar behavior.Comment: 13 pages, in revtex format, plus 1 postscript figur

    Fast coarsening in unstable epitaxy with desorption

    Full text link
    Homoepitaxial growth is unstable towards the formation of pyramidal mounds when interlayer transport is reduced due to activation barriers to hopping at step edges. Simulations of a lattice model and a continuum equation show that a small amount of desorption dramatically speeds up the coarsening of the mound array, leading to coarsening exponents between 1/3 and 1/2. The underlying mechanism is the faster growth of larger mounds due to their lower evaporation rate.Comment: 4 pages, 4 PostScript figure

    Quantum Dimensional Zeeman Effect in the Magneto-optical Absorption Spectrum for Quantum Dot - Impurity Center Systems

    Get PDF
    Magneto-optical properties of the quantum dot - impurity center (QD-IC) systems synthesized in a transparent dielectric matrix are considered. For the QD one-electron state description the parabolic model of the confinement potential is used. Within the framework of zero-range potential model and the effective mass approach, the light impurity absorption coefficient for the case of transversal polarization with respect to the applied magnetic field direction, with consideration of the QD size dispersion, has been analytically calculated. It is shown that for the case of transversal polarization the light impurity absorption spectrum is characterized by the quantum dimensional Zeeman effect.Comment: 18 pages, 1 figure, PDF fil
    corecore